50 research outputs found

    Crossmodal emotional integration in major depression.

    No full text
    Major depression goes along with affective and social-cognitive deficits. Most research on affective deficits in depression has, however, only focused on unimodal emotion processing, whereas in daily life emotional perception is often highly dependent on the evaluation of multimodal inputs. We thus investigated emotional audiovisual integration in patients with depression and healthy subjects. Subjects rated the expression of happy, neutral and fearful faces while concurrently being exposed to emotional or neutral sounds. Results demonstrated group differences in left inferior frontal gyrus and inferior parietal cortex when comparing incongruent to congruent happy facial conditions, mainly due to a failure of patients to deactivate these regions in response to congruent stimulus pairs. Moreover, healthy subjects decreased activation in right posterior superior temporal gyrus/sulcus and middle cingulate cortex when an emotional stimulus was paired with a neutral rather than another emotional one. In contrast, patients didn't show such deactivation when neutral stimuli were integrated. These results demonstrate aberrant neural response in audiovisual processing in depression, indicated by failure to deactivate regions involved in inhibition and salience processing when congruent and neutral audiovisual stimuli pairs are integrated, providing a possible mechanism of constant arousal and readiness to act in this patient group

    Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    Get PDF
    The inferior parietal cortex (IPC) is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition) in schizophrenia. By using task-independent (resting state) and task-dependent (MACM) analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC), medial orbitofrontal cortex (mOFC), left middle frontal (MFG) as well as inferior frontal (IFG) gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups

    The Aging Brain and Executive Functions Revisited: Implications from Meta-analytic and Functional Connectivity Evidence

    No full text
    Healthy aging is associated with changes in cognitive performance, including executive functions (EFs) and their associated brain activation patterns. However, it has remained unclear which EF-related brain regions are affected consistently, because the results of pertinent neuroimaging studies and earlier meta-analyses vary considerably. We, therefore, conducted new rigorous meta-analyses of published age differences in EF-related brain activity. Out of a larger set of regions associated with EFs, only the left inferior frontal junction and the left anterior cuneus/precuneus were found to show consistent age differences. To further characterize these two age-sensitive regions, we performed seed-based resting-state functional connectivity (RS-FC) analyses using fMRI data from a large adult sample with a wide age range. We also assessed associations of the two regions' whole-brain RS-FC patterns with age and EF performance. Although functional profiling and RS-FC analyses point toward a domain-general role of the left inferior frontal junction in EFs, the pattern of individual study contributions to the meta-analytic results suggests process-specific modulations by age. Our analyses further indicate that the left anterior cuneus/precuneus is recruited differently by older (compared with younger) adults during EF tasks, potentially reflecting inefficiencies in switching the attentional focus. Overall, our findings question earlier meta-analytic results and suggest a larger heterogeneity of age-related differences in brain activity associated with EFs. Hence, they encourage future research that pays greater attention to replicability, investigates age-related differences in deactivation, and focuses on more narrowly defined EF subprocesses, combining multiple behavioral assessments with multimodal imaging

    Dissociating Bottom-Up and Top-Down Processes in a Manual Stimulus–Response Compatibility Task

    No full text
    Speed and accuracy of motor responses to lateralized stimuli are influenced by the spatial overlap between stimulus location and required response. Responses showing high spatial overlap with peripheral cues benefit from a bottom-up driven enhancement of attention to the respective location, whereas low overlap requires top-down modulated reorienting of resources. Here we investigated the interaction between these two processes using a spatial stimulus-response compatibility task. Subjects had to react to lateralized visual stimuli with a button press using either the ipsilateral (congruent condition) or the contralateral (incongruent condition) index finger. Stimulus-driven bottom-up processes were associated with significant contralateral activation in V5, the intraparietal sulcus (IPS) and the premotor cortex (PMC). Incongruent versus congruent responses evoked significant activation in bilateral IPS and PMC, highly overlapping with the activations found for stimulus-driven bottom-up processes, as well as additional activation in bilateral anterior insula and right dorsolateral prefrontal cortex (DLPFC) and temporoparietal junction (TPJ). Moreover, a region anterior to the bottom-up driven activation in the IPS was associated with top-down modulated directionality-specific reorienting of motor attention during incongruent motor responses. Based on these results, we propose that stimulus-driven activation of contralateral IPS and PMC represent key neuronal substrates for the behavioral advantage observed when reacting toward a congruently lateralized stimulus. Additional activation in bilateral insula and right DLPFC and TPJ during incongruent responses should reflect top-down control mechanisms mediating contextual (i.e., task) demands. Furthermore, this study provides evidence for both overlapping and disparate substrates of bottom-up and top-down modulated attentional processes in the IPS
    corecore